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NOTATION
Phase velocity of a longitudinal elastic wave.
Phase velocity of a longitudinal elastic wave when

the wavelength is much larger than the diameter
of the elastic rod.

' Young's modulus.

Stiffness of the mount.

Length of the mount.

Mass of the mounted machine,

Mass of the elastic material of the mount.
Dimensionless damping parameter wa/2E

Lumped resistance of the mount.

Critical resistance.

Cross-sectional area of the mount.
Transmissibility.

Particle displacement in the elastic material.
Particle velocity in the elastic material.
Admittance per unit length of the transmission line.
Characteristic impedance of the transmission line.
Attenuation function.

Phase function.

Propagation function.

Shear viscosity of the mount material.
Longitudinal viscosity of the mount material =4/8(1+v)p
Poisson's ratio.

Density of mount material.

Longitudinal stress.

Shear stress.

Angular frequency.

Angular frequency at the spring mass resonance.

Angular frequency at the standing wave resonances.



WAVE EFPECTS IN ISOLATION MOUNTS
by

Mark Harrison, Alan O. Sykes, and M. Martin

ABSTRACT

Both theoretical and experimental studies of wave effects in isolation mounts
bave been made. From the standpoint of vibration isclation, wave effects are im-
portant in the sense that the vibration isolating properties of a mount are changed
by their presence. The well-known ‘‘lumped parameter’’ theory of vibration mounts
predicts that the vibration isolation of a mount increases at 12 dd per octave for
frequencies well above the resonant frequency of the spring-mass system. This
theory holds true only when the wavelength of the elastic wave in the mount is
large compared to the dimensions of the mount. Standing waves occur, as would be
expected, which in certain frequency ranges decrease the vibration isolation proper-
ties of the mount by as much as 20 db. For practical mounts, wave effects are
most detrimental in the most audible frequency range (500 to 1000 cps). The theo-
retical and experimental treatments are in good agreement, and indicate various
methods for improving the vibration isolation properties of the mount. Experimen-
tal data concerning isolation mounts fabricated of various materials are presented.

INTRODUCTION

If the performance of a typical isolation mount is measured, it is
found that It departs from that which 1s predicted from simple vibration
‘theory. This theory, which 1s based upon treating the spring, mass, and the
resistance as lumped parameters, predicts that the vibration isolation of a
mount increases at 12 db per octave -for frequencies well above the resonant
frequency of the spring-mass system. A detalled treatment of the lumped
parameter theory will not be given 1in this paper, as it has been adequately
preserited in many texts on vibration engineering.' The performance of.a
mount in regard to vibration 1solation 1s usually measured in terms of trans
missibility, which 1s defined as the ratio of tne force delivered by a mount

to a base ronsisting of an infinite rigid mass to the force developed by the

1References are listed on page 22.



machine. In decibels, the transmissibility T,is given by

Figee

T=20 h‘lo (F mbo'u)

It 1s found experimentally that the transmissibility of an actual mount
behaves in a manner that 1s 1llustrated in Pigure 1. Reference 2 contains
extensive data on many commerclal isolation mounts, and these data all show
that the transmissibility decreases at 12 db per octave for s limited fre-
quency range only, while at higher frequencies a complicated behavior that
is suggestive of standing waves 18 revealed.

It 18 the intention of this paper to explain the actual behavior
of mounts in terms of wave effects. (The mounts will be treated as acoustic
transmission lines with traveling and standing waves.) These waves are
elastic, and for complicated mounts may be combinations of shear, compression,
bulk, torsion, and Rayleigh surface waves. It may be seen from Figure 1 that
wave effects have the ability to impair the noise isolation properties of
the mount. It will be seen that standing waves can increase the transamissi-
bility of a mount in certain frequency ranges by as much as 20 db above that
which would be predicted from simple vibration theory. At higher frequencies,
however, the transmissibility may be decidedly reduced.

The method of treating this problem has been both experimental and
theoretical. On the experimental side, actual mounts have been constructed
and their transmissibility measured. They are intended to be idealizations
of compression mounts, though sufficiently similar to practical mounts to
preserve the essential features. On the other hand, the mounts are suffi-
ciently simplified to permit an adequate theoretical treatment without need-
less complications.

The agreement bstween theory

and experiment is sufficiently good tc
$ 20— Justify the principal thesis of the
2o '\> - study, namely, that an adequate treat-
S0 AN ment can only be given by viewing the
§-40 T <A~ 1s0lation mount as a continuous elastic
i$ | \\ structute in which wave motion ocours.

1001657600 TaB0h
Froequency in cps

Figure 1 - Experimental Curve of
Transmissibility T in db
versus Frequency in cps

Lord Mount 200X PE9O.
Machine mase 9.9 1d.
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THEQRETICAL DISCUSSION

Longitudinal wave motion in an elastic rod with viscous moduli
and whose diameter is small compared to the wavelength 1s given by the equa-
tj.on‘

M _ 0% . 8% :
Poui ~F ozt th 5o (1]

Because of the finite cross section of the rod, there will be
lateral motion and lateral stress, so this derivation is not exact. The
effect of this approximation on the velocity and damping will be discussed
in the Appendix. )

Solutions of Equation [1) for the case of an elastic rod terminated
at one end by an infinite rigid mass and with the other end excited by a
simple harmonic driving force F = F e¢/** will now be investigated. For this
case, Equation [1] becomes

0% . e 0w ‘
P-o—t-;-(E-%-,ua)'—’-;; (2]
The solution to this equation 1s
u=A e+ A0 (3]

where ¥ = a+jpB, the complex propagation function, Ifwu/E<<1, then it may
be verified by substitution that

a= .__,2";'5; (4]
A= C% (5]
c.= (£)" (6]

An exact solution to the differential equation has been given by
Nolle,* but it develops that for the amount -of damping in the mount consider-
ed in this paper the error in using this approximate solution 1s negligible.
The termihation of the rod in the infinite rigid base, as shown in Figure 2,
imposes the boundary condition % =0 at z=0, At z2=1, P=F /S, Equation
[3], when solved using these boundary conditions, gives two equations that
lead to the two equations,



F, toh ys (7

%7@ =45 =3 z
e "
b= Gy 0

It 1s to be observed that the reciprocal of the admittance per unit length
of the transaission line is given by

et () (9]

For those who like analogies, the case
here 1s one of an open circuited trans-
nission line whose neries impedance is
an inductance and whose shunt impedance
is a resistance in series with a capacity.
In the present treatment, use will bhe
made of the well-known formal identity
of acoustic and electrical transmission
P 1guﬁ:uit-agéaﬁ::?n:tpg::§:tion line equations. 1In this point of view
one merely needs to know ¥ and Z,. The
propagation function has slready been found (Equations [4] and [5]), and the
characteristic impedance Z, is known to be pC,.
All transmission line relationships given in the subsequent treat-
ment are contained elsewhere.®
The isolation mount is represented in Figure 2. The relationships
for. the forces shown in the figure are

F, Z ,~
F T ZT el [10]
- )

where Z, the input impedance of the mount, 18 given by the equation,
Z = SZ, coth yl (12]

The ratic of F, to.F is given by
F, 1

T- : .
1" g“T‘.‘- sith y{ + cosh y

[13]



This ratio of forces F,, /F i1s defined as the transmissibility T for the mount.
It is instructive to observe that this gives the simple vibration

theory for the mount when the wavelength of sound in the mount is much larger

than the physical length of the mount. From Equation (9] 1t is seen that

5= =l -] o

Equation [13] can then be written

1
joM 'sinhyl_*_“hw (13a]

-

Now as A>> l,yl+ 0, so that sinh ?I »»!. The expression for T then becomes

T=

-(&)
T= = [15]
B+jloM - ()] "
where R and K have been defined by the equations,

)
k="

(16]

ES
K=T

These quantities are the ordinary resistance and stiffness of the mount that
are used in vibration theory. The magnitude of T can be written in a con-
venient nondimensional form,

1+(2UR)’ 1/8

wy R,

{1_( )'} ZuR (17)

where wy = (K/M)'}, and R, =2 (-Kll')i This equation is more adequately dis-
cussed in Reference 1.

For purposes of computation, Equation [13] can be put into other
forms. In the discusslon of vibration mounts, only the magnitude of T is of
interest, so the following treatment 1is accordingly restricted. After no in-
considerable amount of algebra, the magnitude of Equation [13] can be written

TJ - 1+5nt
{1+ 5aN)sinh*al + contBll+ ("C'S') [sinh® ol + sin®80] + (—C—g) [nsinhal-2(1+ 2n;) :;u]n 261}
1

IT| =




where n is the nondimensional damping parameter and is equal to wm’/2E.

It 1s instructive to examine Equation [18) when the viscous damping
18 zero. Setting » = 0 we obtain

IT) = u;l [19)
|cos Bl — in 8l
cos S pC.S sing

It 18 convenient to introduce the following nondimensional
quantities

n= wu/2E
Bl = w/w, (m/M)'/?
al = nw/w, (m/M)V*
WM/pGS = w/, (M/m)V?

where m =plS , the mass of the elastic material in the isolation mount.
Equations [18] and [19], then become

1+ 5nt

e (%)} sinwtln 2 (—;",—)"i];a“lo(%)l sinh [2n 2 (7)7_]
| el @ Tl

-G asan wpE (7]

IT =

(20]
>

IT| =

o[ (] - - () " sn - ()] (21]

These are the forms that best lend themselves to discussions and computations.
It 1s 20 1ogT, with T given by Equation [20], that 18 plotted in Figures 3 -
7, inclusive. The denominator of Equations [20] and [21] becomes a minimum
when

wmwyin{)? ian8. . [22]

The corresponding values of w; are the standing wave angular resonant fre-
quencies. The denominator of Equations [20] and [21] becomes a minimum when
“/“o(nW)"' becomes small because of & approachingw,. This gives the



ordinary vibration theory resonance.
It is of interest to write Equation [17) using a different notation.
After oomidomblo qlgobra the equation can be written

e (@) ] 2
[{1 (‘i}+4n’(—)J (23]

It should be noted that in this case s becomes identical with the ratio R/R,
tHat 1s introduced_a.sra dimensionless parameter in the ordinary vibration
theory. This can be shown directly by going back to the definitions of »,

R, and R,, and performing the necessary algebra. At the low frequency reso-
nance, when damping is not too large, the expression for the transmissibility
becomes approximately ‘

1
To--z—’;- [2“]

It 18 also of interest to point out that

"o"z—q'; [25]

where Q. is the Q at the low frequency resonance, and is defined by the equa-
tion Q, = w,M/R,.

It may seem surprising that the mass ratio, M/, turned out to be
a fundamental parameter in the preceding treatment, so it seems appropriate
to add a few words of explanation. Suppose that both the machine mass M and
the low resonant angular frequency w, are specified. Since w, = (K/M )V',
K 18 also specified. With K specified, it 18 still possible to make an in-
dependent choice of m. For example, if the mount 1s a circular cylinder, K,
1s given in terms of the area, length, and Young's modulus by the equation,

k=-E5 [26]
Keeping K and E constant still permits an arbitrary choice of S. By choosing
S and | large or small, the value of m can be made large or small. The shape
of the mount changes with the value of m since the linear dimensions of the
mount do not remain proportional. In conjunction with these ideas, Equation
[26]) can be written .
pES’
n=—F (27]



where p =m/Sl. ‘tnhus it 18 seen that

‘0 choosing K still leaves us free to
a to choose m, and this 18 tantamount to
£ ° \\\ c¢hoosing a shape for the mount.
220 Returning to the discussion
3.40} A of the theoretical curve of transmissi-
i.¢0! Mws bility, there is plotted in Figures 3 -
E;. N \*3; 7, the transmissibility T versus the
100 . 0'0%3 ”%Eoo frequency ratio w/w, for a mass ratio
0. 10 10 ' M/m of 100 and for three values of the
wo damping parameter, s: 0.03, 0.1, and
fitce )T e o 0.5, ot praceica o have s
Frequency Ratio w/wy for a ratios between 100 and 1000, and values
Mass Ratio M/m = 100 of n between 0.1 and 0.03. The previ-

ously mentioned curves are computed on the assumption both of constant veloc-
ity of the elastic wave in the mount and of constant a. This 1is only approxi-
mately true in actual mounts, but plotting the curves on this basis helps re-
veal the pertinent features. .

In Figure 3 it is seen that the mount obeys the lumped parameter vi-
bration theory until w approaches standing wave frequencies. The transmissi-
bility versus frequency curve then departs from the familiar 12-db per octave
relationship. The standing wave frequencies can be computed by the approxi-
mate relationship, “i/“o-'i(%)lh i=1,2.8,...,

where w, is the angular frequency of the
standing wave. The transmissibility

40 T;,at w; can be computed from the
20 approximate relationship,
0 _/\ . M\ V2 . 172
bt o (2
.20 T‘- ‘I’o \m Uo M

which 1s an approximation of Equation
[20]. It i1s interesting to note that

Yronsmisibllity T in db
FS
o

-6

the peaks in the transmissibility be-
-80 cause of the standing waves decrease
-100g; 1.0 at 12 db per octave and are displaced

upward from the simple vibration theory

Filgure 4 - .Theoretical Curve of curve by 20 logn. The valleys between
" Transmissibility T in db versus the peaks decrease at 6 db per octave,

Fre 2mencytl::t:o-ué«:v1. ﬁﬁﬁ ?gx:ping and the standing waves are no longer

Various Mass Ratios . _discernible for frequency ratios above



the ratio where a line drawn through
the peaks and valleys intersects. It 20t
can be shown that for these high fre-
quency ratios the mount can be viewed
as a dissipative medium in which the
elastic waves are exponentially atten-
uated. In this frequency range the
transmissibility decreases at an accel-
erated rate, as the figures clearly ~1005= 0 i

show. =

Figure 3 illustrates the ad- pygne 5 . Theoretical Curve of
vantage of high damping. This is at gizgirziz;igiﬁgyu%%nrgg I‘S:rxr‘l:lil:g‘
variance with the simple vibration
theory which states that high damping Par%::igﬂsnmzsg .;agixgsfor
can increase the transmissibility. The discrepancy between the conclusions
has its basis in the fact that simple vibration theory is only a partial
description of the situation.

Figure 4 shows the. transmissibility for various mass ratios, with
the damping held constant. In this situation there does not appear to be a
universally best mass ratio. The mass ratio that gives the best performance,
i.e., the smallest transmissibility, in one frequency range may give poor
performance in another frequency range.

In Figure 5 a comparison is made upon a different basis--the machine
mass M 1s specified and the stiffness K and hence, the resonant frequency w,
1s varied, since wy = (K/M)"h. However, K is varied by changing only the
eross-sectional area of the mount and leaving the length of the mount constant.

P 3
(=4

T

<
O\

Tronsmisibility T in db
-

K 1s given in terms of the dimensions

of the mount by the equation K =E(S/l), o

where S 1s the cross-sectional area, a YN

{ 1s the length, and E is Young's modu- f_ \\

lus. In the figures, the transmissi- 220 ' [V

bility in decibels is plotted versus 240 N

the dimensionless frequency ratio i..c : ‘\;\‘(k

@ /w;, where w;is the angular frequen- .§.+

cy of the first standing wave. The 100l ' \X
results lead to the same conclusion ol 0 ».......'.‘,’ in eps 100 1000
as does the simple vibration theory, *
namely, that w, should be as low as Figure 6 - Theoretical Curve of

N
possible to give low transmissibility gﬁg:i’:ﬁg;iﬁ‘?gzmﬁi&: g:r::x::g:

at high frequencies. Figure 6 results n= 0,1 and Two Mass Ratios
‘ , Differing by a Factor of 3
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40 from the same conditions that were ob-
20 served in Figure 5, except that the

0 N\ stiffness 18 changed by varying the

N\ length of the mount rather than the
cross-sectional area. An arbitrary fre-
quency 8cale 1s used since there are no

lmitllbill'y Thh @
»
o

-6 \k\\ convenient dimensionless frequency

-80 parameters. The stiffness for the two

490%, 7 o 106 joo0 curves differs by a factor of three.
i%. The standing wave frequencies,w;,vary

inversely with the length of the mount,
Figure 7 - Theoretical Curve of

Transmissibility T in db versus while the low resonant frequency, w,,
Frequency Ratio w/w, for a varies inversely with the square root

n”ﬂ::?tﬁg:?:;:tﬁ::ﬁqunﬁrzz.. of the length. The conclusion indicated
here once again is that it is advanta-
geous to have w, as low as possible.

In Figure 7 the theoretical curve is given for a mount constructed
of Buna-N cement. The data for this were obtained from Reference 4. This
curve is included because Buna-N has remarkably good properties with respect
to the amount of damping, and the effects of standing waves are negligible.

In fact, the transmissibility is less than simple vibration theory would
lead one to expect. .-

EXPERIMENTAL RESULTS

The types of mounts which were studied experimentally were compres-
sional and of cylindrical form. One spring mount was considered to show that
the method of analysis used was applicable. There were varlous reasons for
choosing a particular shape of mount and the material from which the mount
was fabricated. Actual compression mounts have complicated shapes and often
operate with complicated constraints on the boundaries. As such, they pre-
sent an impossibly difficult analytical problem. A circular cylinder with
1ts ends bonded to the metal disks was chosen because if it became necessary
to obtain an analytical solution to the elasticity problem, it would be possi-
ble to do so. Actually, it has not yet appeared imperative to obtain the
exact solution to the elastic problem, though it does appear'desirable. In
this study the analytic problem has been circumvented by using cylinders of
different length to diameter ratios. If the length of the cylinder is con-
siderably larger than the diameter, then the stress distribution 1s plane
over a cross section sufficiently distant from the constraint on the ends
which results from the rubber-metal bond. Conditions are ideally simplified



1

in this case, and the theoretical results apply to an excellent degree of
approximation, singce the elastic properties of the cylinder are uniform
throughout most of its length. Here, for example, the stiffness K, 1s quite
accurately related to Young's modulus E by K =E S/, where S and ! are the
eross section and length of the cylinder, respectively. If, howéver, the
length of the cylinder is considerably smaller than the diameter, then the
effect of constrained ends is to complicate the stress and strain distributiou
near the ends of the cylinder. This results in velocity and damping changes
in the mount material. Also, if one attempts to compute K 3s indicated above
he would use, instead of F, some effective modulus which 1s a function of S/!.
This function can be obtalned analytically or experimentally. This effect

of the constrained ends is called the "end effect" and is discussed in the
Appendix.

The mounts were all tested with a low value of mass ratio, M/m,
since for large mass ratlios the transmissibility becomes small at relatively
low frequencies and difficulty with noise pick-up is encountered. For large
mass ratios, there 1s no reason to expect the mount to behave in a manner .
different from that predicted by theory. It 1s expected, however, that the
effective stiffness of the mount will change with different loads, since
the static stress-strain curve 1s not-quite linear.

The mounts were constructed from convenlently avallable materials.
Some of the materlals were rubber with ordinary elastic and damping constants,
corprene, cell-tight rubber, and a steel helical spring; These materials
were chosen because it was belleved that their unusual physical properties
would exaggerate various effects and provide a test for the applieability of
the theoretical 1deas.

Table 1 gives the physical dimensions of the cylindrical maqunts,
their mass m,and the designation by which the mounts are referred to in the
figures. The numerical designation refers to a kind of material, and the
alphabetical designation distinguishes various shapes for a particular kind
of material.

Tables 2. 3, and 4 present data on the static and dynamic stiff-
nesses. In Table 2 it 1s seen that the dynamic stiffness 1s always larger
than the static stiffness. The static "end effect" should also be noted.

If there was no end effect, changing the length of the mount by a factor of
two should change the stiffness by a like factor. Comparing the static stiffa-
ness data for mounts 1C and 1D, 1t may be seen that changing the length by a
factor of two results in a change in the stiffness by a r?ctor of three and
one-half. For longer mounts, such as 1A and 1B, the end effect is negligible.

~ s
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TABLE 1

Physical Data for the Isolation Mounts
Investigated Experimentally

- Mount - Length | Diameter » Mount
Designation ( 4 nes | inches | pounds Material
1A 3.0 1.25 0.130 Soft rubbder
1B 1.5 1.25 0.065 Soft rubber
1C 0.5 1.25 - 0.0217 Soft rubber
1D 0.25 1.25 oo Soft rubber
2A 3.97 1.25 0.204 Hard rubber
2B 1.96 1.25 0.107 Hard rubber
2C 0.51 1.25 0.0235 Hard rubber
2D 0.25 1.25 0.0134 Hard rubber
3 0.437 1.25 0.00274 | Cell-tight rubber
Y v cee 0.178 | Steel helical spring
5 - 0.73 1.25 0.0259 Corprene
TABLE 2

¢omparison of Static and Dynamic Stiffness

The length of the mount is given in parentheses beside the mount desigmation.
The frequency at vhich the dynamic stiffness was obtained is given in parentheses.

Mount Static Stiffness | Dynamic Stiffness
1b/in. 1b/1in.

1A (3 in.) 95 111 (27.5 cps)
1B (1.5 in.) 185 204 (37.5 cps)
1¢ (0.5 in.) 850 831 (80 cps)
1D (0.25 in.) 2800 3800 (150 cps)
2A (4 in.) 134 251 (44 cps)
2B (2 in.) 275 571 (64 cps)
2C. (0.5 in.) 1140 3090 (145 cps)
2D (0.25 1in.) 2600 18,000 (350 cps)
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TABLE 3

Static Stiffness Versus Creep Time

Mount - Statlc Stiffness | Static Stiffness

(1 sec creep) (30 sec creep)
' 2A (4 1n.) 167 134
2B (2 1in.) 310 275
2¢ {0.5 1in.) 1400 1140
2D (0.25 1in.) 5600 2600

The dynamic stiffness was then obtained through use of the equation
K=Ma,'. Table 4 presents the dynamic stiffness at different frequencies,
The behavior of mount 2D is of interest. In Table 2 it is seen that mount
2D had the largest difference between statlic and dynamic stiffnesses. Now
in Table 4, the dynamic stiffness of mount 2D is decreasing with decreasing
frequency and 1s approaching the static value. These data are noteworthy
since for the same material, save for a length of 4 in., there was no varia-
tion of the stiffness aside from the experimental; however, the frequency
range was different. For the Y-inch mount (2A), the data presented in Figure
12 show that the elastic modull are relatively constant for frequencies up
to 1000 cps. Since this contradicts the data presented in Table 4 on the
0.25-inch mount (2D), the difference is quite possibly assoclated with the
"end effect."”

TABLE 4

Dynamic Stiffness Versus Frequenry

Mount 1D
Frequency Stiffness

cps 1b/1in.
32.5 3980
go.o 270
1.5 3220
157 3800

Mount 2D
43 6340
116 14,500
182 15,500
340 18,000




n
TABLE 5

Comparison of Computed and Measured Ratio of Standing
Wave Frequency to the Low Resonant Frequency

 Computed | Measured Beror. | Destgnation Matertal
10.8 1.3 +4.6 1A Soft rubber
4.7 "16.3 +10.9 1B Soft rubber
24.0 33.7 +40.5 1 Soft rubber
8.22 8.90 +8.3 2A Hard rubber
11.9 13.2 +11.0 2B Hard rubber
36.0 43.0 +16.0 3 Cell-tight rubber
9.0 © 9.6 +6.7 y Helical spring

Table 5 presents a comparison between the computed value of the
ratio of the standing wave angular frequencies to the low resonant angular
frequency w;/w, and the experimentally measured value. It is to be noted
that while the agreement is reasonably good, the experimental value always
exceeds the computed value. This point 1s discussed further in the Appendix.

Table 6 presents the experimentally measured value of the dimen-
sionless damping parameter . It is to be noted that.m is substantially con-
stant for a reasonably wide frequency range, but tends to slowly increase.

It 18 to be noted that at specific frequencies, the values of n» given in
Table 6 are smaller for short mounts than for longer mounts of the same ma-
terial. This 1s a consequence of the rubber-metal bond which gives what has
been referred to in this paper as the "end effect."

Consider a rubber cylinder bonded to two infinitely stiff objects,
designated by M. Now the shear stress is given by 7= 1/2(¢, -¢,) since the
principal axes are chosen to coincide with coordinate axesz and ¥y. At great
distances from the constrained ends ¢, is nearly zero, and the shear stress
18 a maximum. Near the constrained ends ¢, approaches vo,/1 - », and the
shear stress decreases from its maximum value. Since the dissipation is pro-
portional to the time rate of shear strain, the "end effect” results in a
decrease of n.

There seems to be an equivalent point of view for seeing how this
reduction of # because of the end effect comes about. Since n = wu'!/2E for
a long thin cylinder, it is reasonable to expect that for more complicated
cases E should be replaced by an effective modulus for the particular region
in the material. Now we have seen in the Appendix that near the ends the
effective modulus is larger than E and hence » 1is decreased.
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TABLE 6

Values of the Damping Parameter m at the Resonant Frequencies

The mode number of the standing wvave is designated by the subsoript attached to
the dsmping parameter s. The frequency in oycles per second is stated in pareitheses
beside the measured values of .

"y " " ggggznation Material

- 0.025 (27.5) | 0.070 (310) |0.14 (570) 1A Soft rubber
0.031 (37.5) ] 0.060 (610) | 0.09 (1050) 1B Soft rubber
0.036 (80.0) Ve ce 1C Soft rubber
0.079 (44) |0.120 (400) |0.140 (800) |  2a Hard rubber
0.090 (65) 0.11 (80) . 2B Hard rubber

Figures 8 - 10, inclusive, present transmissibility and phase curves

for the various mounts whose data have been summarized in the preceding tables.

In Figures 8 - 10, inclusive, the theoretical curves based upon the
measured values of # are superimposed upon the experimental curves. As may
be seen, the agreement is quite good. The theoretical curves were computed
on the assumption of constant velocity, which in turn implies a constant ef-
fective modulus. The agreement indicates that, as a first approximation,
this 18 a good assumption on which to predict the performance of a vibration
mount.

It 1s of interest to note in Table 5 the agreement between the com-
puted and measured values of w;/w, for the helical spring. It may seem sur-
prising that, knowing the mass ratio
M/m and the low resonance angular

40
frequency w,, one is able to predict L
the standing wave frequency without S 2op00 S Rt
knowing either the stiffness or the £ © A R ii
velocity of the elastic wave in the 2200 = Sk AN
= orimental
spring. A critical examination of §. 0 A
the ways in which the mass ratio M/m E 60 Theoreticol
was introduced as a parameter reveals £ ,
that all this information is contain- 100

ed in its value. o 100 1000 10,060

Frequency in cps
Phase measurements were 8
Figure - Superposition of Theoretical
made, because it was found in some and Experimental Curves of Transmissi-
instances that this afforded a more bility T in db and Phase in degrees

sensitive method of detecting standing versud Frequency in cps
Mount 1A, M/m = 10.9
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Mount 1B, M/m == 21.8 Mount 1C, M/m == 58.3

wave frequencies than the transmissiblity. The phase i3 90 degrees whenever
a longitudinal standing wave occurs. Inspection of the experimental data

reveals the characteristic behavior of the phase shifts associated with the
standing waves,

MEASUREMENTS AND INSTRUMENTATION

The transmissibility T is defined as. the ratio of the force F..
which the isolation mount delivers to a base that consists of a rigid infinite
mass, to the exciting force F applied to the machine. We shall view the sys-
tem of the mass M plus the isclation mount as a four-terminal network a-b-c-d,
as represented in Figure 11, where G is the vibration generator and Z, is the
impedance of the machine. The transmissibility is given by

Twm ..F.'l"_
where F,, 1s the open circuit force at terminals c-d, which correspond to a
base of very high impedance.

It is convenient to use a theorem that simplifies the measurement

problem. This theorem says the transmissibility is given by
|

- AL
T=%
where V is the velocity at terminals c-d, and V,. 1s the short circuit veloc-

ity at terminals a-b.

Also, it 18 true that the ratio of accelerations is identical with
the ratio of velocities, since simple harmonic motion has been assumed.
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The meaning of this exceedingly use- v e £
ful theorem !s that instead .of measuring forces ‘{ :- 4 B {oc
b e

when determining the transmissibility, one can
measure the acceleration with accelerometers. F*‘Eﬁ:;llI°§°§§§§§"Z§§1§Qe°f
The latter measurement is considerably simpler. Machine ds a Four-
The proof of the theorem is 28 follows: Terminal Network
If terminals c-d are shorted, by Thevenin's theorem g velocity V=F,, /Z,,
will result. Z,; 18 the impedance messured between terminals c-d. Now if
terminals a-b are short circuited and the generator is applied to terminals
c-d, this 1s equivalent to applying a force F'=VZ, to the terminals. Also,
a velocity V,, will appear at terminals a-b. Now by the reciprocity theorem,
V, v
T-F
If the substitutionsV's F,, /Z,, and F=VZ4 are made, one obtains

F, V.
- —.-‘ -
Te =3 QED

A block diagram of a simple measurement system 1s shown in Figure
12.

The vibration generator must be carefully adjusted to assure only
vertical motion of the generator: The isolation mount is then stud-bolted in
place and Massa accelerometers, Model 127, are Secured in positions 1 and 2
a8 indicated.

The vibration generator is then driven by an oscillator-power amp-
lifier combination at any desired frequency, and the amplitude and phase re-
lationships of the outputs from the two accelerometers are measured. The
difference in the amplitude readings measured in decibels relative to an ar-
bitrary reference voltage gives the modulus of the transmissibility in deci-
bels, and the phase measurement gives the phase angle of the transmissibility.:

The signal to noise ratio was improved by using a General Radio,
Model 736A, 4-cycle, band-width analy-

zer to make the measurements, both of
amplitude and phase. Unfortunately, Accelerometer '

the analyzer is difficult to tune and . V§Shum
must be calibrated frequently if accu- 4 Yn’q'o'.'e

rate data are to be obtained. To fa-

cilitate the measurenents, a system was
devised for providing a signal to drive
the power ampiifier, to which the ana-

lyzer is automatically tuned. This Plgure 12 - Disgram of Simple Measuri

came evident that if a device could be ‘Isolation Mounts

Vibretor
Senerater
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.R. 1. Recorder Potentiometer
tterence Frequency

Centrel
Accoleremeter
088 | Mixer

-

Teerve [Meshanioat Link
v te Recerder

Lecol °*
Oscllioter!
[}

peoccm o o ame

FOTnpet

"*']:;;“ t”ﬁ

e} 2525 “‘Wﬁ#

F.R.A. Reserder
Vibrater | for Reserding
Tronsmisslbility

Figure 13 - Diagram of Complete Measuring System Incorporating
a Servomechanism for Maintaining Constant Acceleration

1. To msesure tranmmissidility emplitude, switohes A and B must de in
position 1.

2. To measure tranmmiésidility pbase, switches A and B mmst be in
position 2.

constructed which would provide a constant acceleration output from the gen-
erator, direct recordings of transmissibility would be possible. Such a
device was constructed, utilizing the servomechanism of an FR-1 recorder.
The block diagram of the entire system 1s shown in Figure 13.

The phase meter 1s a system of comparing voltages by the voltage
vector triangle method. It 1s possible to make measurements of phase between
undistorted signals in the range from 50 to 10,000 cps to an accuracy greater
than *1 degree for angles between 0 and 180 degrees. In principal, the same
accuracy can be obtained by using the analyzer as a voltmeter for badly dis-
torted signals. The phase meter accuracy is limited by the accuracy with
which the voltage readings can be taken. ,

ENGINEERING IMPLICATIONS

In discussing how the experimental results bear on the problem of
designing an isolation mount, the narrow viewpoint is adopted that noise re-
duction is the only goal. All other considerations, such as shock, damage,
etc., are neglected. 1In other words, the discussion is limited to that of a
machine that is subject to no outside influence, and the sole problem is to
1solate the noise that 1s generated when the machine runs from the foundation
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upon which the machine is sitting.

The importance of high damping has been noted elsewhere. The de-
sirability of high damving is clearly indicated. If the damping 1s prescribed
by some condition, the shape of the mount may 8t1ll be varied. It is clear
from the theoretical curves that 1f the low resonant. angular frequency w, 1s
specified, a large mass ratio M/m 1is desirable. This means that both the
length and the cross-sectional area of the mount should be as emall as possi-
ble. But there 18 a limit as to how small the area S-can be. Because of
the weight M, of the machine, a strain is caused in the mount material that

is given by M
strain = 'Et

where £ 1s the modulus of the material. There 1s a maximum permissible value
for this straln because of considerations of creep, strength, etc. When the
mount material is specified along with this value of maximum strain, then the
minimum value of S is specified. Now since the stiffness K is given by

and since i, and M are specified, K 1s specified. Then ! 18 also specified,
since S 1s given by the maximum permissible strain specification. Further-
more, this value of ! is the minimum value under the circumstances. The
preceding argument is perfectly consistent with another way of thinking about
the matter. If the objective were to increase the standing wave frequencies
to a high value, then one would minimize I . If w, and M, and hence K, were
speciried, then ES would be minimized, since ! is minimized. However, in
minimizing ES, the maximum strain specification must be observed, and thus
the same conclusion is reached.
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APPENDIX

THE VELOCITY OF COMPRESSION WAVES IN CYLINDRICAL
MOUNTS AND THE END EFFECT

It was noted earlier that certain approximations were made in de-
riving the basic differential equation. The more exact theory is discussed
elsewhere.® This reference shows that when the wavelength becomes an appreci-
able fraction of the diameter of the cylinder, there results a decrease in
velocity from the value given by C, = (E/p)Y*. To a first approximation this
decrease in the velocity 1s caused by the radial motion. The inertia associ-
ated with this radial motion was neglected in the derivation® of the wave
equation. If it is included it can be thought of as an increase of the de-
nominator of the expression C. = UﬁAp)V“, and hence, 1t results in a decrease
in velocity. Figure 14 presents the velocity dispersion curve. The abscissa
15 the ratio of diameter to wavelength, and the ordinate is the ratio of ac-
tual velocity to C,.

Other approximations that affect the velocity have been made.
Small damping was assumed to obtain Equation [6). If such an assumption had
not been made, the phase veloclty of the wave would have been approximately
CaC, (1 +n2/2),

There is still another approximation that 1s important. Near the
ends of the cylinder that are bonded to the relatively stiff metal blocks
the effective modulus of the material increases. As already noted in Table
2, this results in an increase in effective modulus. Figure 15 presents some
typical data for the effective modulus of cylinders with varying length to
diameter ratios. It is easily seen that the "end effect," which is associated
with the rubber-metal bond, results in a higher effective modulus for the

rubber. What 18 not .so easily seen

i1s that it has a different influence
101 upon'both the low frequency resonant
:: . waves and the standing waves. In Table
4&3J . - 3 1t was shown that the observed value
0.6 [~ of w,/w, was always larger than the
08 ‘ computed value. It will now be shown
0 08 i0 1.2 1415 (820 that this could be a consequence of
{ the "end effect" having a different

influence upon the low resonant fre-
Figure 14 - Ratio of Longltudinal Wave quency and the standing wave frequen-

Velocity in a Circular Cylinder to
the Young's Modulus Velocity cles.

As a Function of Diameter Consider a mount constructed
to Wavelength Ratio d/A
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of two materials of moduli E‘and E“

88 1llustrated in FPigure 16. The mount
at the low frequency resonance can be 2
thought of as having two stiffnesses K, !
and X,, where K'= 2ES/l and a corres-
ponding relation holds for K“(land §
are the length and cross-sectional area
of the mount). Now w, will be given by
w,= (KADY®, where K =K'K /(K+K").
If one then attempts to compute the
velocity based on the measured values

E' in n/in?

t Flgure 15 - Effective Modulus versus
of M and by means of the equation Diameter to Length Ratio for &
E m_ Ki 12 Circular Cylinder with
Co= (;-) ( » S) Constrained Ends

a misleading answer 1is obtained, as will now be_ shown.

The velocity C,, which determines w,, the standing wave angular
frequency, i1s the average velocity for the entire length of the mount. It
will now be demonstrated that C, is always larger than C,.

The velocities in the different parts of the mount are

' l ) T
C=zr
C'= 2—:—
where t'and ¢"are the times required by the wave to travel through the differ-
ent parts of the mount. Now the velocity C, is

Cl-'—r—l—

t +t%)
Substituting the previous expressions for C ‘and C "gives
CIC”
C=2gvcT
Writing this in terms of the moduli E’and E ', one obtains

Cm 2 _(EE)
1= ST FVI L pTA

Figure 16 - Diagram of an Isolation ’/}Q

Mount Constructed of Two Materials 24
of Dif!‘ermg Young's €
Modulus E'and E Tz
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Writing Cy in terms of E and E “gives

1t o1/
CO"(%') (1,(7‘;:-0-%"2)' A

Consider now the ratio C,/C,. This is

gl - gt (E'+EN

0 E'RLE A

and 18 clearly larger than unity, except when E'=E", in which case it be-
comes equal to unity. All the theoretical curves and standing wave frequen-
cies are computed on the basis of constant velocity of the wave in the meunt
where the velocity 1s based upon data obtained at the low frequency resonance.
Hence, 1t 1s to be expected that there will be discrepancies of the type ob-

served in Table 5.
This special case follows from a more general theorem that is not

yet ready for publication.

To summarize, the velocity of the elastic wave in a compression
mount with constrained ends 1s subject to three influences. The velocity will
tend to decrease with increasing frequency because of the radial motion. The
value of the damping parameter # tends to increase with increasing frequency,
and this results in an increase in velocity. The "end effect" results in an
effective increase in velocity with increasing frequency. These three influ-
ences co-exist and make a preclse prediction of the variation of veiocity

with frequency exceedingly difficult.
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